15 research outputs found

    Single-Microphone Speech Enhancement and Separation Using Deep Learning

    Get PDF

    Single-Microphone Speech Enhancement and Separation Using Deep Learning

    Get PDF
    The cocktail party problem comprises the challenging task of understanding a speech signal in a complex acoustic environment, where multiple speakers and background noise signals simultaneously interfere with the speech signal of interest. A signal processing algorithm that can effectively increase the speech intelligibility and quality of speech signals in such complicated acoustic situations is highly desirable. Especially for applications involving mobile communication devices and hearing assistive devices. Due to the re-emergence of machine learning techniques, today, known as deep learning, the challenges involved with such algorithms might be overcome. In this PhD thesis, we study and develop deep learning-based techniques for two sub-disciplines of the cocktail party problem: single-microphone speech enhancement and single-microphone multi-talker speech separation. Specifically, we conduct in-depth empirical analysis of the generalizability capability of modern deep learning-based single-microphone speech enhancement algorithms. We show that performance of such algorithms is closely linked to the training data, and good generalizability can be achieved with carefully designed training data. Furthermore, we propose uPIT, a deep learning-based algorithm for single-microphone speech separation and we report state-of-the-art results on a speaker-independent multi-talker speech separation task. Additionally, we show that uPIT works well for joint speech separation and enhancement without explicit prior knowledge about the noise type or number of speakers. Finally, we show that deep learning-based speech enhancement algorithms designed to minimize the classical short-time spectral amplitude mean squared error leads to enhanced speech signals which are essentially optimal in terms of STOI, a state-of-the-art speech intelligibility estimator.Comment: PhD Thesis. 233 page

    Multi-talker Speech Separation with Utterance-level Permutation Invariant Training of Deep Recurrent Neural Networks

    Full text link
    In this paper we propose the utterance-level Permutation Invariant Training (uPIT) technique. uPIT is a practically applicable, end-to-end, deep learning based solution for speaker independent multi-talker speech separation. Specifically, uPIT extends the recently proposed Permutation Invariant Training (PIT) technique with an utterance-level cost function, hence eliminating the need for solving an additional permutation problem during inference, which is otherwise required by frame-level PIT. We achieve this using Recurrent Neural Networks (RNNs) that, during training, minimize the utterance-level separation error, hence forcing separated frames belonging to the same speaker to be aligned to the same output stream. In practice, this allows RNNs, trained with uPIT, to separate multi-talker mixed speech without any prior knowledge of signal duration, number of speakers, speaker identity or gender. We evaluated uPIT on the WSJ0 and Danish two- and three-talker mixed-speech separation tasks and found that uPIT outperforms techniques based on Non-negative Matrix Factorization (NMF) and Computational Auditory Scene Analysis (CASA), and compares favorably with Deep Clustering (DPCL) and the Deep Attractor Network (DANet). Furthermore, we found that models trained with uPIT generalize well to unseen speakers and languages. Finally, we found that a single model, trained with uPIT, can handle both two-speaker, and three-speaker speech mixtures

    Permutation Invariant Training of Deep Models for Speaker-Independent Multi-talker Speech Separation

    Full text link
    We propose a novel deep learning model, which supports permutation invariant training (PIT), for speaker independent multi-talker speech separation, commonly known as the cocktail-party problem. Different from most of the prior arts that treat speech separation as a multi-class regression problem and the deep clustering technique that considers it a segmentation (or clustering) problem, our model optimizes for the separation regression error, ignoring the order of mixing sources. This strategy cleverly solves the long-lasting label permutation problem that has prevented progress on deep learning based techniques for speech separation. Experiments on the equal-energy mixing setup of a Danish corpus confirms the effectiveness of PIT. We believe improvements built upon PIT can eventually solve the cocktail-party problem and enable real-world adoption of, e.g., automatic meeting transcription and multi-party human-computer interaction, where overlapping speech is common.Comment: 5 page

    On the Relationship Between Short-Time Objective Intelligibility and Short-Time Spectral-Amplitude Mean-Square Error for Speech Enhancement

    Get PDF
    The majority of deep neural network (DNN) based speech enhancement algorithms rely on the mean-square error (MSE) criterion of short-time spectral amplitudes (STSA), which has no apparent link to human perception, e.g. speech intelligibility. Short-Time Objective Intelligibility (STOI), a popular state-of-the-art speech intelligibility estimator, on the other hand, relies on linear correlation of speech temporal envelopes. This raises the question if a DNN training criterion based on envelope linear correlation (ELC) can lead to improved speech intelligibility performance of DNN based speech enhancement algorithms compared to algorithms based on the STSA-MSE criterion. In this paper we derive that, under certain general conditions, the STSA-MSE and ELC criteria are practically equivalent, and we provide empirical data to support our theoretical results. Furthermore, our experimental findings suggest that the standard STSA minimum-MSE estimator is near optimal, if the objective is to enhance noisy speech in a manner which is optimal with respect to the STOI speech intelligibility estimator

    On Loss Functions for Supervised Monaural Time-Domain Speech Enhancement

    Get PDF
    Many deep learning-based speech enhancement algorithms are designed to minimize the mean-square error (MSE) in some transform domain between a predicted and a target speech signal. However, optimizing for MSE does not necessarily guarantee high speech quality or intelligibility, which is the ultimate goal of many speech enhancement algorithms. Additionally, only little is known about the impact of the loss function on the emerging class of time-domain deep learning-based speech enhancement systems. We study how popular loss functions influence the performance of deep learning-based speech enhancement systems. First, we demonstrate that perceptually inspired loss functions might be advantageous if the receiver is the human auditory system. Furthermore, we show that the learning rate is a crucial design parameter even for adaptive gradient-based optimizers, which has been generally overlooked in the literature. Also, we found that waveform matching performance metrics must be used with caution as they in certain situations can fail completely. Finally, we show that a loss function based on scale-invariant signal-to-distortion ratio (SI-SDR) achieves good general performance across a range of popular speech enhancement evaluation metrics, which suggests that SI-SDR is a good candidate as a general-purpose loss function for speech enhancement systems.Comment: Published in the IEEE Transactions on Audio, Speech and Language Processin

    Smart-Building Applications:Deep Learning-Based, Real-Time Load Monitoring

    Get PDF

    Speech Intelligibility Potential of General and Specialized Deep Neural Network Based Speech Enhancement Systems

    No full text
    corecore